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Fourth-order compact formulation of Navier—Stokes equations
and driven cavity flow at high Reynolds numbers

E. Erturk™ and C. Gokeolt

Energy Systems Engineering Department, Gebze Institute of Technology, Gebze, Kocaeli 41400, Turkey

SUMMARY

A new fourth-order compact formulation for the steady 2-D incompressible Navier—Stokes equations is
presented. The formulation is in the same form of the Navier—Stokes equations such that any numer-
ical method that solve the Navier—Stokes equations can easily be applied to this fourth-order compact
formulation. In particular, in this work the formulation is solved with an efficient numerical method
that requires the solution of tridiagonal systems using a fine grid mesh of 601 x 601. Using this for-
mulation, the steady 2-D incompressible flow in a driven cavity is solved up to Reynolds number with
Re = 20000 fourth-order spatial accuracy. Detailed solutions are presented. Copyright © 2005 John
Wiley & Sons, Ltd.
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cavity flow; high Reynolds number solutions

1. INTRODUCTION

High-order compact (HOC) formulations are becoming more popular in computational fluid
dynamics (CFD) field of study. Compact formulations provide more accurate solutions in a
compact stencil.

In finite differences, a standard three-point discretization provides second-order spatial ac-
curacy and this type of discretization is very widely used. When a high-order spatial dis-
cretization is desired, i.e. fourth-order accuracy, then a five-point discretization have to be
used. However, in a five point discretization there is a complexity in handling the points near
the boundaries.
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High-order compact schemes provide fourth-order spatial accuracy in a 3 x 3 stencil and
this type of compact formulations does not have the complexity near the boundaries that a
standard wide (five-point) fourth-order formulation would have.

Dennis and Hudson [1], MacKinnon and Johnson [2], Gupta et al. [3], Spotz and Carey [4]
and Li et al. [5] have demonstrated the efficiency of the HOC schemes on the streamfunction
and vorticity formulation of 2-D steady incompressible Navier—Stokes equations.

In the literature, it is possible to find numerous different types of iterative numerical methods
for the Navier—Stokes equations. These numerical methods, however, could not be easily used
in HOC schemes because of the final form of the HOC formulations used in References [1-5].
This fact might be counted as a disadvantage of HOC formulations that the coding stage is
rather complex due to the resulting stencil used in these studies. It would be very useful if
any numerical method for the solution of Navier—Stokes equations described in books and
papers could be easily applied to HOC formulations.

In this study, we will present a new fourth-order compact formulation. The difference of this
formulation with References [1-5] is not in the way that the fourth-order compact scheme is
obtained. The main difference, however, is in the way that the final form of the equations are
written. The main advantage of this formulation is that, any iterative numerical method used
for Navier—Stokes equations, can be easily applied to this new HOC formulation, since the final
form of the presented HOC formulation is in the same form with the Navier—Stokes equations.
Moreover, if someone already have a second-order accurate (0Ax?) code for the solution of
steady 2-D incompressible Navier—Stokes equations, they can easily convert their existing
code to fourth-order accuracy (0Ax*) by just adding some coefficients into their existing
code. Using this new compact formulation, we have solved the steady 2-D incompressible
driven cavity flow at very high Reynolds numbers using a very fine grid mesh to demonstrate
the efficiency of this new formulation.

2. FOURTH-ORDER COMPACT FORMULATION

In non-dimensional form, steady 2-D incompressible Navier—Stokes equations in streamfunc-
tion (Y) and vorticity (w) formulation are given as

oy Y
o T M
10 1 R0 _wyin o o
Re 0x>  Re dy? 0y 0x 0x Oy

where x and y are the Cartesian coordinates and Re is the Reynolds number. For first- and
second-order derivatives the following discretizations are fourth-order accurate:
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where ¢, and ¢,, are standard second-order central discretizations such that

¢l 1 d)l 1
o= L O ()
Qi1 —2¢i + iy
¢XX - - sz (6)

If we apply the discretizations in Equations (3) and (4) to Equations (1) and (2), we obtain

the following equations:

Ax2 0% Ay oty

_BXTO0Y AYTOY A 4 Ay
Yax + Yy D axd 12 00t + O(Ax", Ay") @ (7)
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In these equations we have third and fourth derivatives (03/0x3, 0°/dy?, d*/0x* and 0%/0y*)
of streamfunction and vorticity (yy and w) variables. In order to find an expression for these
derivatives we use Equations (1) and (2). For example, when we take the first and second
x-derivative (6/0x and 02/0x?*) of the streamfunction equation (1) we obtain

3y o Y

T Ox  dxdy? ©)
oy o oMY

T TR axay? (10)

And also, by taking the first and second y-derivative (6/dy and 0%/0y?) of the streamfunc-

tion equation (1) we obtain

3 3
By _ o Oy an
0y3 0y  0x%0y

4 2 4
ay = o Y (12)
oyt 0y?  0x20y?
Using standard second-order central discretizations given in Table I, these equations can be
written as
o3
Tl oy + AR, AYY) (13)
aip—fcu — Yy + O(AX?, Ay?) (14)
ax4 - xx Xxyy ,AY
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Table I. Standard second-order central discretizations, O(Ax? Ay?).
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When we substitute Equations (14) and (16) into Equation (7) we obtain the following
finite difference equation:

Ax? Ay? (Ax2 Ay?

ot = mom Ty o Ty en (1 Ty

)wmy - O(Ax, AR AL, Ay
(17)

We note that the solution of Equation (17) is also a solution to streamfunction
Equation (1) with fourth-order spatial accuracy. Therefore, if we numerically solve
Equation (17), the solution we obtain will satisfy the streamfunction equation up to fourth-
order accuracy.

In order to obtain a fourth-order approximation for the vorticity equation (2), we follow
the same procedure. When we take the first and second derivatives of the vorticity equation
(2) with respect to x- and y-coordinates we obtain

Po . 0H v oY *w 0%y 0w oy 0*w 3w
T Remayax TR o T Remr sy TR may  axoyt (18)
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ot Regas o T Roay o TRy o T RG, on

4 3 2 2 2 2 3
o Y do L Pl 0 Po P

Jﬂ Yy o %y o W Yo o
Reor T R may Moy Ramavsy ey (Y
o _ L ow 0y P % do . 0yl Do
03 5 2 9x +Re@ 0x0y ke dxdy dy Reﬂ?ﬁ - 0x20y (20)

Po Wiw | a de . 0 le . Y o
ay* 7R607y3§ +R€57y2 0x0y +Re57y2 0x0y T Re 0y 0xdy?

3 dw 0% 0’w %y *w 61// o *w
B eaxayzﬂ B e@x@y 0y? _Reaxﬁy ay? “ox 0y3  0x20y? 1)

If we substitute Equations (18) and (20) for the third derivatives of vorticity (d3w/dx* and
03w/dy?) into Equations (8), (19) and (21) and also if we substitute Equations (13) and (15)
for the third derivatives of streamfunction (93y/dx® and d3}/0y?) into Equations (8), (19)
and (21), and finally, if we substitute Equations (19) and (21) for the fourth derivatives of
vorticity (0*w/0x* and 0*w/0y*) into Equation (8), then we obtain the following:
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B (Alz W >“*"~W + O(AX, APAY% Ay (22)

Again we note that the solution of Equation (22) satisfy the vorticity equation (2) with
fourth-order accuracy.
As the final form of our HOC scheme, we prefer to write Equations (17) and (22) as

lpxx+‘//yy:_a)+’4 (23)
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Rie(l +B)w + Rie(l + )y =y + D)oo, — (Y + E)ooy, + F (24)
where
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We note that the finite difference equations (23) and (24) are fourth-order accurate
(O(Ax*, Ax*Ay?, Ay*)) approximation of the streamfunction and vorticity equations (1) and

(2). In Equations (23) and (24), however, if 4, B, C, D, E and F are chosen to be equal to
0 then the finite difference equations (23) and (24) simply become

(i
£ (55 + 55 o — RSy bt + RS et
(
NG

‘/jxx + lpyy =—w (26)
1 1
ﬁwxx + %w” = l//ywx - way (27)

Equations (26) and (27) are the standard second-order accurate (O(Ax?, Ay?)) approxima-
tion of the streamfunction and vorticity equations (1) and (2). When we use Equations (23)
and (24) for the numerical solution of 2-D steady incompressible Navier—Stokes equations,
we can easily switch between second and fourth-order accuracy just by using homogeneous
values for the coefficients 4, B, C, D, E and F or by using the expressions defined in Equation
(25) in the code.

In Equations (23)—(25) instead of finite difference discretizations if we substitute for partial
derivatives we obtain the following differential equations:

%y azlp
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We note that the numerical solutions of Equations (28) and (29), strictly provided that
second-order discretizations in Table I are used and also strictly provided that a uniform
grid mesh with Ax and Ay is used, are fourth-order accurate to streamfunction and vorticity
equations (1) and (2). We prefer to call Equations (28) and (29) Fourth-Order Navier—
Stokes (FONS) equations. The only difference between FONS equations (28) and (29) and
Navier—Stokes (NS) equations (1) and (2) are the coefficients 4, B, C, D, E and F'. In fact
the NS equations are a subset of the FONS equations. We note that FONS equations (28)
and (29) are in the same form with Navier—Stokes equations (1) and (2), therefore, any
iterative numerical method (such as SOR, ADI, factorization schemes, pseudo time iterations,
etc.) used to solve streamfunction and vorticity equations (1) and (2) can also be easily
applied to fourth-order equations (28) and (29). Moreover, any existing code that solve the
streamfunction and vorticity equations with second-order accuracy can easily be modified to
provide fourth-order accuracy just by adding the coefficients 4, B, C, D, E and F into the
existing code to obtain the solution of FONS equations. Of course, when the coefficients 4, B,
C, D, E and F are added into a second-order accurate code to obtain fourth-order accuracy,
evaluating these coefficients would require extra CPU work. This might be considered as the
cost of increasing accuracy from second- to fourth-order.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:421-436
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3. NUMERICAL METHOD

Recently Erturk et al. [6] have presented a new, stable and efficient numerical method that
solve the streamfunction and vorticity equations. The numerical method solve the governing
steady equations through iterations in the pseudo time. In this study, we will apply the numer-
ical method Erturk et al. [6] have proposed, to FONS equations (28) and (29) and solve the
steady driven cavity flow with fourth-order accuracy. For details about the numerical method,
the reader is referred to Erturk et al. [6]. When we apply the numerical method to Equations
(28) and (29) the equations take the following form:

- At— o 1—Ata—2 Y =y + Ato" — AtA" + Ata—z Ata—z v" o (31)
0x? 0y? N 0x? 0y?

( At(HBﬂ)wzm(ggw) o)

( At(1+C")162—At<aw+E) ;)w“

n n n 1 62 a"p . a
= — AtF" + <At(l+B) At(ayﬂj) ax>

(At(l + c")lay2 + At <(Zlﬂ +E> ay)w" (32)

The solution methodology of these two equations are quite simple. First the streamfunction
equation (31) is solved in two steps. For streamfunction equation, a new variable f is defined

as
(1 “al >¢"+' —f (33)
0y? N

Using this variable in Equation (31) we obtain
62 02 02
<1 — )f Y+ Ato" — AtA" + <Ata 2) (At)u,b” 34)

In this equation, the only unknown is the variable f. We first solve this equation for f by
solving a tridiagonal system. After this, when we obtain the value of f at every grid point
we solve Equation (33) for streamfunction (y"*!) by solving another tridiagonal system.

After solving the streamfunction equation (31), we solve the vorticity equation (32). For
this, similarly, we introduce a new variable g which is defined as

( At(1+C”)162—At(g¢ +E) 6y)cu”“_g (35)
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Using this variable in Equation (32), we obtain

( — At(1 +B”)Liz + At(?ﬂ’ ) ;)C)g

=" — AtF"
(st 2o a2 0) 2)
(At(l + C")— ;} + At( 8¢ +E> ay)w” (36)

In this equation the only unknown is the variable g. By solving a tridiagonal system, we
obtain the value of g at every grid point. Then we solve Equation (35) for vorticity (w"*!)
by solving another tridiagonal system.

In a compact formulation, the stencil have 3 x 3 points. The solution at the first diagonal
grid points near the corners of the cavity would require the vorticity values at the corner
points. However, the corner points are singular points for vorticity. Gupta et al. [7] have
introduced an explicit asymptotic solution in the neighbourhood of sharp corners. Similarly,
Stortkuhl et al [8] have presented an analytical asymptotic solutions near the corners of
cavity and using finite element bilinear shape functions they also have presented a singularity
removed boundary condition for vorticity at the corner points as well as at the wall points. We
follow Stortkuhl et al. [8] and use the following expression for calculating vorticity values at
the wall:

[ ] L) L) [ ] [ ] [ ]

1 1 V
1 1
111 1y

where V' is the speed of the wall which is equal to 1 for the moving top wall and equal
to 0 for the three stationary walls. For corner points, we use the following expression for
calculating the vorticity values:

1
_— e
3AR?

w=— (38)

i
<

I

[ ]
[CY[EUN
Bl— D=

1
2

where again V is equal to 1 for the upper two corners and it is equal to O for the bottom
two corners. The reader is referred to Stortkuhl ez al [8] for details.
4. RESULTS AND DISCUSSIONS

The schematics of the driven cavity flow is given in Figure 1. In this figure the abbrevia-
tions BR, BL and TL refer to bottom-right, bottom-left and top-left corners of the cavity,

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:421-436
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Figure 1. Schematic view of driven cavity flow.

respectively. The number following these abbreviations refer to the vortices that appear in the
flow, which are numbered according to size.
For every Reynolds number considered, we have continued our iterations until, in the

computational domain both the maximum residual of Equations (23) and (24), which are
given as

Ry = max(abs(|yr" + Yt + @ = AT ) (39)
1 1
R, = max(abs( ‘ E(l + B Y + E(l + C" Ht!

yy

__(¢¢#4 %—l)n+1)601+1 +_(¢¢#J %—l?n+l)60;+l _>17n+l

i,,-> ) (40)

are less than 107'°. Such a low value is chosen to ensure the accuracy of the solution. At
these residual levels, the maximum absolute change in streamfunction value between two time
steps, (max(|y"*! —y"])), was in the order of 107!¢ and for vorticity, (max(|ow"™! — w"|)),
it was in the order of 10~'4. Obviously, these convergence levels are far more less than
satisfactory, however, such low values demonstrate the efficiency of the numerical method
used in this study which was presented by Erturk et al. [6].
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Figure 3. Streamfunction and vorticity contours for Re = 5000.

Using an efficient numerical method, Erturk ez al. [6] have clearly shown that numerical
solutions of driven cavity flow is computable for Re> 10000 when a grid mesh larger than
256 x 256 is used. With a grid mesh of 601 x 601 Erturk er al [6] have solved the cavity
flow up to Re=21000 using the numerical method also used in this study. In order to be
able to obtain solutions at high Reynolds numbers, following Erturk et @l [6], in this study
we have used a large grid mesh with 601 x 601 grids. With this many number of grid points
we obtained steady solutions of the cavity flow up to Re =20000 with fourth-order accuracy.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:421-436
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Figure 4. Streamfunction and vorticity contours for Re = 10 000.

Figure 5. Streamfunction and vorticity contours for Re = 15 000.

Figures 2—6 show the streamfunction and vorticity contours of the driven cavity flow be-
tween Re=1000 and Re=20000. These figures show the vortices that are formed in the
flow field as the Reynolds number increases. From these contour figures, we conclude that
the fourth-order compact formulation provides very smooth solutions.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:421-436
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=

Figure 6. Streamfunction and vorticity contours for Re = 20 000.

0.97 T T
0.97 0.98 0.99 1

Figure 7. Streamfunction contours for Re = 20000, enlarged view of top-right corner.
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Table III. Minimum streamfunction values at the primary vortex
for various Reynolds numbers.

Present Erturk et al [6]
Re Yimin (OAX*) Yimin (OAX*)
1000 —0.118938 —0.118939
2500 —0.121472 —0.121469
5000 —0.122216 —0.122213
7500 —0.122344 —0.122341
10000 —0.122306 —0.122313
12500 —0.122201 —0.122229
15000 —0.122060 —0.122124
17500 —0.121889 —0.122016
20000 —0.121694 —0.121901

Table IV. Vorticity values at the centre of the primary vortex
for various Reynolds numbers.

Present Erturk et al. [6]
Re o (OAx*) o (OAx*)
1000 —2.067760 —2.067579
2500 —1.976132 —1.976096
5000 —1.940547 —1.940451
7500 —1.926478 —1.926282
10000 —1.918187 —1.917919
12500 —1.912307 —1.912072
15000 —1.907651 —1.907602
17500 —1.903659 —1.903975
20000 —1.900032 —1.900891

In Figure 7 we plot a very enlarged view of the top-right corner (where the moving wall
moves towards the stationary wall) of the streamfunction contour plot for the highest Reynolds
number considered, Re =20000. In this figure the dotted lines show the grid lines. As it is
seen in this enlarged figure, fourth-order streamfunction contours are very smooth even at the
first set of grid points near the corners.

Table II tabulates the streamfunction and vorticity values at the centre of the primary and
secondary vortices and also the location of the centre of these vortices for future references.
This table is in good agreement with that of Erturk et al. [6].

Using Richardson extrapolation on the solutions obtained with different grid meshes, Erturk
et al. [6] have presented theoretically fourth- and sixth-order accurate (0Ax* and OAx®)
streamfunction and vorticity values at the centre of the primary vortex. Tables IIl and IV
compare the fourth-order compact scheme solutions of the streamfunction and the vorticity
values at the centre of the primary vortex with the fourth-order (0Ax*) Richardson extrapo-
lated solutions tabulated in Erturk et al. [6]. The present solutions and the solutions of Erturk
et al. [6] agree with each other.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:421-436
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5. CONCLUSIONS

In this study a new fourth-order compact formulation is presented. The uniqueness of this
formulation is that the final form of the HOC formulation is in the same form of the Navier—
Stokes equations such that any numerical method that solve the Navier—Stokes equations can
be easily applied to the FONS equations in order to obtain fourth-order accurate solutions
(0Ax*). Moreover, with this formulation, any existing code that solve the Navier—Stokes
equations with second-order accuracy (Ax?) can be altered to provide fourth-order accurate
(0Ax*) solutions just by adding some coefficients into the code at the expense of extra CPU
work of evaluating these coefficients.

In this study, the presented fourth-order compact formulation is solved with a very efficient
numerical method introduced by Erturk ef al. [6]. Using a fine grid mesh of 601 x 601, as it
was suggested by Erturk et al. [6] in order to be able to compute for high Reynolds numbers,
the driven cavity flow is solved up to Reynolds number Re =20000. The solutions obtained
agree well with previous studies. The presented fourth-order accurate compact formulation is
proved to be very efficient.
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