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Fourth-order compact formulation of Navier–Stokes equations
and driven cavity �ow at high Reynolds numbers
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SUMMARY

A new fourth-order compact formulation for the steady 2-D incompressible Navier–Stokes equations is
presented. The formulation is in the same form of the Navier–Stokes equations such that any numer-
ical method that solve the Navier–Stokes equations can easily be applied to this fourth-order compact
formulation. In particular, in this work the formulation is solved with an e�cient numerical method
that requires the solution of tridiagonal systems using a �ne grid mesh of 601× 601. Using this for-
mulation, the steady 2-D incompressible �ow in a driven cavity is solved up to Reynolds number with
Re = 20 000 fourth-order spatial accuracy. Detailed solutions are presented. Copyright ? 2005 John
Wiley & Sons, Ltd.

KEY WORDS: high-order compact scheme; HOC; steady 2-D incompressible N–S equations; driven
cavity �ow; high Reynolds number solutions

1. INTRODUCTION

High-order compact (HOC) formulations are becoming more popular in computational �uid
dynamics (CFD) �eld of study. Compact formulations provide more accurate solutions in a
compact stencil.
In �nite di�erences, a standard three-point discretization provides second-order spatial ac-

curacy and this type of discretization is very widely used. When a high-order spatial dis-
cretization is desired, i.e. fourth-order accuracy, then a �ve-point discretization have to be
used. However, in a �ve point discretization there is a complexity in handling the points near
the boundaries.
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High-order compact schemes provide fourth-order spatial accuracy in a 3× 3 stencil and
this type of compact formulations does not have the complexity near the boundaries that a
standard wide (�ve-point) fourth-order formulation would have.
Dennis and Hudson [1], MacKinnon and Johnson [2], Gupta et al. [3], Spotz and Carey [4]

and Li et al. [5] have demonstrated the e�ciency of the HOC schemes on the streamfunction
and vorticity formulation of 2-D steady incompressible Navier–Stokes equations.
In the literature, it is possible to �nd numerous di�erent types of iterative numerical methods

for the Navier–Stokes equations. These numerical methods, however, could not be easily used
in HOC schemes because of the �nal form of the HOC formulations used in References [1–5].
This fact might be counted as a disadvantage of HOC formulations that the coding stage is
rather complex due to the resulting stencil used in these studies. It would be very useful if
any numerical method for the solution of Navier–Stokes equations described in books and
papers could be easily applied to HOC formulations.
In this study, we will present a new fourth-order compact formulation. The di�erence of this

formulation with References [1–5] is not in the way that the fourth-order compact scheme is
obtained. The main di�erence, however, is in the way that the �nal form of the equations are
written. The main advantage of this formulation is that, any iterative numerical method used
for Navier–Stokes equations, can be easily applied to this new HOC formulation, since the �nal
form of the presented HOC formulation is in the same form with the Navier–Stokes equations.
Moreover, if someone already have a second-order accurate (O�x2) code for the solution of
steady 2-D incompressible Navier–Stokes equations, they can easily convert their existing
code to fourth-order accuracy (O�x 4) by just adding some coe�cients into their existing
code. Using this new compact formulation, we have solved the steady 2-D incompressible
driven cavity �ow at very high Reynolds numbers using a very �ne grid mesh to demonstrate
the e�ciency of this new formulation.

2. FOURTH-ORDER COMPACT FORMULATION

In non-dimensional form, steady 2-D incompressible Navier–Stokes equations in streamfunc-
tion ( ) and vorticity (!) formulation are given as
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where x and y are the Cartesian coordinates and Re is the Reynolds number. For �rst- and
second-order derivatives the following discretizations are fourth-order accurate:
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where �x and �xx are standard second-order central discretizations such that
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(6)

If we apply the discretizations in Equations (3) and (4) to Equations (1) and (2), we obtain
the following equations:
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In these equations we have third and fourth derivatives (@3=@x3, @3=@y3, @4=@x 4 and @4=@y 4)
of streamfunction and vorticity ( and !) variables. In order to �nd an expression for these
derivatives we use Equations (1) and (2). For example, when we take the �rst and second
x-derivative (@=@x and @2=@x2) of the streamfunction equation (1) we obtain
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And also, by taking the �rst and second y-derivative (@=@y and @2=@y 2) of the streamfunc-
tion equation (1) we obtain
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Using standard second-order central discretizations given in Table I, these equations can be
written as
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Table I. Standard second-order central discretizations, O(�x2;�y 2).
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When we substitute Equations (14) and (16) into Equation (7) we obtain the following
�nite di�erence equation:
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We note that the solution of Equation (17) is also a solution to streamfunction
Equation (1) with fourth-order spatial accuracy. Therefore, if we numerically solve
Equation (17), the solution we obtain will satisfy the streamfunction equation up to fourth-
order accuracy.
In order to obtain a fourth-order approximation for the vorticity equation (2), we follow

the same procedure. When we take the �rst and second derivatives of the vorticity equation
(2) with respect to x- and y-coordinates we obtain
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If we substitute Equations (18) and (20) for the third derivatives of vorticity (@3!=@x3 and
@3!=@y3) into Equations (8), (19) and (21) and also if we substitute Equations (13) and (15)
for the third derivatives of streamfunction (@3 =@x3 and @3 =@y3) into Equations (8), (19)
and (21), and �nally, if we substitute Equations (19) and (21) for the fourth derivatives of
vorticity (@4!=@x 4 and @4!=@y 4) into Equation (8), then we obtain the following:

!xx +!yy − Re
�x2

6
 xy!xx + Re

�y 2

6
 xy!yy + Re2

�x2

12
 y y!xx + Re2

�y 2

12
 x x!yy

=Re y! x − Re x!y + Re
(
�x2

12
+
�y 2

12

)
 xxy! x − Re

(
�x2

12
+
�y 2

12

)
 xyy!y

−Re2
�x2

12
 y xy!x + Re2

�y 2

12
 x yy!x + Re2

�x2

12
 y xx!y − Re2

�y 2

12
 x xy!y

+Re
(
�x2

12
+
�y 2

12

)
 y!xyy − Re

(
�x2

12
+
�y 2

12

)
 x!xxy − Re

�x2

6
 xx!xy

+Re
�y 2

6
 yy!xy + Re2

(
�x2

12
+
�y 2

12

)
 x y!xy − Re

(
�x2

12
− �y 2

12

)
!x!y

−
(
�x2

12
+
�y 2

12

)
!xxyy + O(�x 4;�x2�y 2;�y 4) (22)

Again we note that the solution of Equation (22) satisfy the vorticity equation (2) with
fourth-order accuracy.
As the �nal form of our HOC scheme, we prefer to write Equations (17) and (22) as

 xx +  yy =−!+ A (23)
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We note that the �nite di�erence equations (23) and (24) are fourth-order accurate
(O(�x 4;�x2�y 2;�y 4)) approximation of the streamfunction and vorticity equations (1) and
(2). In Equations (23) and (24), however, if A, B, C, D, E and F are chosen to be equal to
0 then the �nite di�erence equations (23) and (24) simply become

 xx +  yy =−! (26)
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Equations (26) and (27) are the standard second-order accurate (O(�x2;�y 2)) approxima-
tion of the streamfunction and vorticity equations (1) and (2). When we use Equations (23)
and (24) for the numerical solution of 2-D steady incompressible Navier–Stokes equations,
we can easily switch between second and fourth-order accuracy just by using homogeneous
values for the coe�cients A, B, C, D, E and F or by using the expressions de�ned in Equation
(25) in the code.
In Equations (23)–(25) instead of �nite di�erence discretizations if we substitute for partial

derivatives we obtain the following di�erential equations:
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We note that the numerical solutions of Equations (28) and (29), strictly provided that
second-order discretizations in Table I are used and also strictly provided that a uniform
grid mesh with �x and �y is used, are fourth-order accurate to streamfunction and vorticity
equations (1) and (2). We prefer to call Equations (28) and (29) Fourth-Order Navier–
Stokes (FONS) equations. The only di�erence between FONS equations (28) and (29) and
Navier–Stokes (NS) equations (1) and (2) are the coe�cients A, B, C, D, E and F . In fact
the NS equations are a subset of the FONS equations. We note that FONS equations (28)
and (29) are in the same form with Navier–Stokes equations (1) and (2), therefore, any
iterative numerical method (such as SOR, ADI, factorization schemes, pseudo time iterations,
etc.) used to solve streamfunction and vorticity equations (1) and (2) can also be easily
applied to fourth-order equations (28) and (29). Moreover, any existing code that solve the
streamfunction and vorticity equations with second-order accuracy can easily be modi�ed to
provide fourth-order accuracy just by adding the coe�cients A, B, C, D, E and F into the
existing code to obtain the solution of FONS equations. Of course, when the coe�cients A, B,
C, D, E and F are added into a second-order accurate code to obtain fourth-order accuracy,
evaluating these coe�cients would require extra CPU work. This might be considered as the
cost of increasing accuracy from second- to fourth-order.
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3. NUMERICAL METHOD

Recently Erturk et al. [6] have presented a new, stable and e�cient numerical method that
solve the streamfunction and vorticity equations. The numerical method solve the governing
steady equations through iterations in the pseudo time. In this study, we will apply the numer-
ical method Erturk et al. [6] have proposed, to FONS equations (28) and (29) and solve the
steady driven cavity �ow with fourth-order accuracy. For details about the numerical method,
the reader is referred to Erturk et al. [6]. When we apply the numerical method to Equations
(28) and (29) the equations take the following form:
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The solution methodology of these two equations are quite simple. First the streamfunction
equation (31) is solved in two steps. For streamfunction equation, a new variable f is de�ned
as
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In this equation, the only unknown is the variable f. We �rst solve this equation for f by
solving a tridiagonal system. After this, when we obtain the value of f at every grid point
we solve Equation (33) for streamfunction ( n+1) by solving another tridiagonal system.
After solving the streamfunction equation (31), we solve the vorticity equation (32). For

this, similarly, we introduce a new variable g which is de�ned as
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Using this variable in Equation (32), we obtain
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In this equation the only unknown is the variable g. By solving a tridiagonal system, we
obtain the value of g at every grid point. Then we solve Equation (35) for vorticity (!n+1)
by solving another tridiagonal system.
In a compact formulation, the stencil have 3× 3 points. The solution at the �rst diagonal

grid points near the corners of the cavity would require the vorticity values at the corner
points. However, the corner points are singular points for vorticity. Gupta et al. [7] have
introduced an explicit asymptotic solution in the neighbourhood of sharp corners. Similarly,
St�ortkuhl et al. [8] have presented an analytical asymptotic solutions near the corners of
cavity and using �nite element bilinear shape functions they also have presented a singularity
removed boundary condition for vorticity at the corner points as well as at the wall points. We
follow St�ortkuhl et al. [8] and use the following expression for calculating vorticity values at
the wall:
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where V is the speed of the wall which is equal to 1 for the moving top wall and equal
to 0 for the three stationary walls. For corner points, we use the following expression for
calculating the vorticity values:
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where again V is equal to 1 for the upper two corners and it is equal to 0 for the bottom
two corners. The reader is referred to St�ortkuhl et al. [8] for details.

4. RESULTS AND DISCUSSIONS

The schematics of the driven cavity �ow is given in Figure 1. In this �gure the abbrevia-
tions BR, BL and TL refer to bottom-right, bottom-left and top-left corners of the cavity,
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Figure 1. Schematic view of driven cavity �ow.

respectively. The number following these abbreviations refer to the vortices that appear in the
�ow, which are numbered according to size.
For every Reynolds number considered, we have continued our iterations until, in the

computational domain both the maximum residual of Equations (23) and (24), which are
given as

R =max(abs(| n+1
xx +  n+1

yy +!n+1 − An+1 | i; j)) (39)

R! =max
(
abs

( ∣∣∣∣ 1Re (1 + Bn+1)!n+1
xx +

1
Re
(1 + Cn+1)!n+1

yy

−( n+1
y +Dn+1)!n+1

x + ( n+1
x + En+1)!n+1

y − Fn+1

∣∣∣∣
i; j

) )
(40)

are less than 10−10. Such a low value is chosen to ensure the accuracy of the solution. At
these residual levels, the maximum absolute change in streamfunction value between two time
steps, (max(| n+1 −  n|)), was in the order of 10−16 and for vorticity, (max(|!n+1 − !n|)),
it was in the order of 10−14. Obviously, these convergence levels are far more less than
satisfactory, however, such low values demonstrate the e�ciency of the numerical method
used in this study which was presented by Erturk et al. [6].
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Figure 2. Streamfunction and vorticity contours for Re = 1000.

Figure 3. Streamfunction and vorticity contours for Re = 5000.

Using an e�cient numerical method, Erturk et al. [6] have clearly shown that numerical
solutions of driven cavity �ow is computable for Re¿10 000 when a grid mesh larger than
256× 256 is used. With a grid mesh of 601× 601 Erturk et al. [6] have solved the cavity
�ow up to Re=21 000 using the numerical method also used in this study. In order to be
able to obtain solutions at high Reynolds numbers, following Erturk et al. [6], in this study
we have used a large grid mesh with 601× 601 grids. With this many number of grid points
we obtained steady solutions of the cavity �ow up to Re=20 000 with fourth-order accuracy.
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Figure 4. Streamfunction and vorticity contours for Re = 10 000.

Figure 5. Streamfunction and vorticity contours for Re = 15 000.

Figures 2–6 show the streamfunction and vorticity contours of the driven cavity �ow be-
tween Re=1000 and Re=20 000. These �gures show the vortices that are formed in the
�ow �eld as the Reynolds number increases. From these contour �gures, we conclude that
the fourth-order compact formulation provides very smooth solutions.
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Figure 6. Streamfunction and vorticity contours for Re = 20 000.
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Figure 7. Streamfunction contours for Re = 20 000, enlarged view of top-right corner.
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Table III. Minimum streamfunction values at the primary vortex
for various Reynolds numbers.

Present Erturk et al. [6]
Re  min (O�x 4)  min (O�x 4)

1000 −0.118938 −0.118939
2500 −0.121472 −0.121469
5000 −0.122216 −0.122213
7500 −0.122344 −0.122341
10 000 −0.122306 −0.122313
12 500 −0.122201 −0.122229
15 000 −0.122060 −0.122124
17 500 −0.121889 −0.122016
20 000 −0.121694 −0.121901

Table IV. Vorticity values at the centre of the primary vortex
for various Reynolds numbers.

Present Erturk et al. [6]
Re ! (O�x 4) ! (O�x 4)

1000 −2.067760 −2.067579
2500 −1.976132 −1.976096
5000 −1.940547 −1.940451
7500 −1.926478 −1.926282
10 000 −1.918187 −1.917919
12 500 −1.912307 −1.912072
15 000 −1.907651 −1.907602
17 500 −1.903659 −1.903975
20 000 −1.900032 −1.900891

In Figure 7 we plot a very enlarged view of the top-right corner (where the moving wall
moves towards the stationary wall) of the streamfunction contour plot for the highest Reynolds
number considered, Re=20 000. In this �gure the dotted lines show the grid lines. As it is
seen in this enlarged �gure, fourth-order streamfunction contours are very smooth even at the
�rst set of grid points near the corners.
Table II tabulates the streamfunction and vorticity values at the centre of the primary and

secondary vortices and also the location of the centre of these vortices for future references.
This table is in good agreement with that of Erturk et al. [6].
Using Richardson extrapolation on the solutions obtained with di�erent grid meshes, Erturk

et al. [6] have presented theoretically fourth- and sixth-order accurate (O�x 4 and O�x6)
streamfunction and vorticity values at the centre of the primary vortex. Tables III and IV
compare the fourth-order compact scheme solutions of the streamfunction and the vorticity
values at the centre of the primary vortex with the fourth-order (O�x 4) Richardson extrapo-
lated solutions tabulated in Erturk et al. [6]. The present solutions and the solutions of Erturk
et al. [6] agree with each other.
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5. CONCLUSIONS

In this study a new fourth-order compact formulation is presented. The uniqueness of this
formulation is that the �nal form of the HOC formulation is in the same form of the Navier–
Stokes equations such that any numerical method that solve the Navier–Stokes equations can
be easily applied to the FONS equations in order to obtain fourth-order accurate solutions
(O�x 4). Moreover, with this formulation, any existing code that solve the Navier–Stokes
equations with second-order accuracy (O�x2) can be altered to provide fourth-order accurate
(O�x 4) solutions just by adding some coe�cients into the code at the expense of extra CPU
work of evaluating these coe�cients.
In this study, the presented fourth-order compact formulation is solved with a very e�cient

numerical method introduced by Erturk et al. [6]. Using a �ne grid mesh of 601× 601, as it
was suggested by Erturk et al. [6] in order to be able to compute for high Reynolds numbers,
the driven cavity �ow is solved up to Reynolds number Re=20 000. The solutions obtained
agree well with previous studies. The presented fourth-order accurate compact formulation is
proved to be very e�cient.
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